import discord import aiohttp import asyncio import os import re import random import string import base64 import subprocess import aiofiles from langchain_community.vectorstores import FAISS from langchain_ollama import OllamaEmbeddings from langchain.text_splitter import CharacterTextSplitter from langchain_community.docstore.document import Document from collections import defaultdict, deque from apscheduler.schedulers.asyncio import AsyncIOScheduler from discord import File from discord import Status from discord.ext import tasks import datetime from apscheduler.triggers.date import DateTrigger from datetime import datetime, timedelta scheduler = AsyncIOScheduler() BEDTIME_CHANNEL_IDS = [761014220707332107] # Stores last 5 exchanges per user (as deque) conversation_history = defaultdict(lambda: deque(maxlen=5)) DISCORD_BOT_TOKEN = os.getenv("DISCORD_BOT_TOKEN") OLLAMA_URL = os.getenv("OLLAMA_URL", "http://ollama:11434") OLLAMA_MODEL = os.getenv("OLLAMA_MODEL", "mistral") embeddings = OllamaEmbeddings( model=OLLAMA_MODEL, base_url=OLLAMA_URL ) # Set up Discord client intents = discord.Intents.default() intents.message_content = True intents.members = True intents.presences = True client = discord.Client(intents=intents) current_model = None # Track currently loaded model name KINDNESS_KEYWORDS = [ "thank you", "love you", "luv u", "you're the best", "so cute", "adorable", "amazing", "sweet", "kind", "great job", "well done", "precious", "good girl", "cutie", "angel", "my favorite", "so helpful" ] HEART_REACTIONS = ["💙", "💝", "💖", "💕", "💜", "❤️‍🔥", "☺️"] kindness_reacted_messages = set() AUTO_MOOD = True CURRENT_MOOD = "neutral" AVAILABLE_MOODS = [ "bubbly", "sleepy", "curious", "shy", "serious", "excited", "melancholy", "flirty", "romantic", "irritated", "angry", "neutral" ] # Switch model async def switch_model(model_name: str, timeout: int = 600): global current_model if current_model == model_name: print(f"🔁 Model '{model_name}' already loaded.") return # Unload all other models to clear VRAM async with aiohttp.ClientSession() as session: async with session.get(f"{OLLAMA_URL}/api/show") as resp: if resp.status == 200: data = await resp.json() loaded_models = data.get("models", []) for model in loaded_models: if model["name"] != model_name: print(f"🔁 Unloading model: {model['name']}") await session.post(f"{OLLAMA_URL}/api/stop", json={"name": model["name"]}) else: print("⚠️ Failed to check currently loaded models.") print(f"🔄 Switching to model '{model_name}'...") async with aiohttp.ClientSession() as session: await session.post(f"{OLLAMA_URL}/api/stop") # Warm up the new model (dummy call to preload it) payload = { "model": model_name, "prompt": "Hello", "stream": False } headers = {"Content-Type": "application/json"} # Poll until /api/generate returns 200 async with aiohttp.ClientSession() as session: for _ in range(timeout): async with session.post(f"{OLLAMA_URL}/api/generate", json=payload, headers=headers) as resp: if resp.status == 200: current_model = model_name print(f"✅ Model {model_name} ready!") return await asyncio.sleep(1) # Wait a second before trying again raise TimeoutError(f"Timed out waiting for model '{model_name}' to become available.") async def is_miku_addressed(message) -> bool: # If message is a reply, check the referenced message author if message.reference: try: referenced_msg = await message.channel.fetch_message(message.reference.message_id) if referenced_msg.author == message.guild.me: # or client.user if you use client return True except Exception as e: print(f"⚠️ Could not fetch referenced message: {e}") cleaned = message.content.strip() return bool(re.search( r'(? str: path = os.path.join("moods", f"{mood_name}.txt") try: with open(path, "r", encoding="utf-8") as f: return f.read().strip() except FileNotFoundError: print(f"⚠️ Mood file '{mood_name}' not found. Falling back to default.") return load_mood_description("neutral") # Detect mood cues from Miku's response def detect_mood_shift(response_text): mood_keywords = { "neutral": [ "okay", "sure", "alright", "i see", "understood", "hmm", "sounds good", "makes sense", "alrighty", "fine", "got it" ], "bubbly": [ "so excited", "feeling bubbly", "super cheerful", "yay!", "✨", "nya~", "kyaa~", "heehee", "bouncy", "so much fun", "i’m glowing!", "nee~", "teehee", "I'm so happy" ], "sleepy": [ "i'm sleepy", "getting tired", "yawn", "so cozy", "zzz", "nap time", "just five more minutes", "snooze", "cuddle up", "dozing off", "so warm" ], "curious": [ "i'm curious", "want to know more", "why?", "hmm?", "tell me more", "interesting!", "what’s that?", "how does it work?", "i wonder", "fascinating", "??", "🧐" ], "shy": [ "um...", "sorry if that was weird", "i’m kind of shy", "eep", "i hope that’s okay", "i’m nervous", "blushes", "oh no", "hiding face", "i don’t know what to say", "heh...", "/////" ], "serious": [ "let’s be serious", "focus on the topic", "this is important", "i mean it", "be honest", "we need to talk", "listen carefully", "let’s not joke", "truthfully", "let’s be real" ], "excited": [ "OMG!", "this is amazing", "i’m so hyped", "YAY!!", "let’s go!", "incredible!!!", "AHHH!", "best day ever", "this is it!", "totally pumped", "i can’t wait", "🔥🔥🔥", "i'm excited", "Wahaha" ], "melancholy": [ "feeling nostalgic", "kind of sad", "just thinking a lot", "like rain on glass", "memories", "bittersweet", "sigh", "quiet day", "blue vibes", "longing", "melancholy", "softly" ], "flirty": [ "hey cutie", "aren’t you sweet", "teasing you~", "wink wink", "is that a blush?", "giggle~", "come closer", "miss me?", "you like that, huh?", "🥰", "flirt mode activated", "you’re kinda cute" ], "romantic": [ "you mean a lot to me", "my heart", "i adore you", "so beautiful", "so close", "love letter", "my dearest", "forever yours", "i’m falling for you", "sweetheart", "💖", "you're my everything" ], "irritated": [ "ugh", "seriously?", "can we not", "whatever", "i'm annoyed", "you don’t get it", "rolling my eyes", "why do i even bother", "ugh, again?", "🙄", "don’t start", "this again?" ], "angry": [ "stop it", "enough!", "that’s not okay", "i’m mad", "i said no", "don’t push me", "you crossed the line", "furious", "this is unacceptable", "😠", "i’m done", "don’t test me" ] } for mood, phrases in mood_keywords.items(): for phrase in phrases: if phrase.lower() in response_text.lower(): print(f"*️⃣ Mood keyword triggered: {phrase}") return mood return None @tasks.loop(hours=1) async def rotate_mood(): global CURRENT_MOOD new_mood = CURRENT_MOOD attempts = 0 while new_mood == CURRENT_MOOD and attempts < 5: new_mood = random.choice(AVAILABLE_MOODS) attempts += 1 CURRENT_MOOD = load_mood_description(new_mood) print(f"⏰ Mood auto-rotated to: {new_mood}") async def download_and_encode_image(url): async with aiohttp.ClientSession() as session: async with session.get(url) as resp: if resp.status != 200: return None img_bytes = await resp.read() return base64.b64encode(img_bytes).decode('utf-8') async def analyze_image_with_qwen(base64_img): await switch_model("moondream") payload = { "model": "moondream", "prompt": "Describe this image in detail.", "images": [base64_img], "stream": False } headers = {"Content-Type": "application/json"} async with aiohttp.ClientSession() as session: async with session.post(f"{OLLAMA_URL}/api/generate", json=payload, headers=headers) as response: if response.status == 200: data = await response.json() return data.get("response", "No description.") else: return f"Error: {response.status}" async def rephrase_as_miku(qwen_output, user_prompt): await switch_model(OLLAMA_MODEL) # likely llama3 with open("miku_prompt.txt", "r", encoding="utf-8") as f: system_prompt = f.read() relevant_docs_lore = miku_vectorstore.similarity_search(qwen_output, k=3) context = "\n\n".join([doc.page_content for doc in relevant_docs_lore]) full_prompt = ( f"{context}\n\n" f"The user asked: \"{user_prompt}\"\n" f"The image contains: \"{qwen_output}\"\n\n" f"Respond like Miku: cheerful, helpful, and opinionated when asked.\n\n" f"Miku is currently feeling: {CURRENT_MOOD}\n Please respond in a way that reflects this emotional tone.\n\n" f"Miku:" ) payload = { "model": OLLAMA_MODEL, "prompt": full_prompt, "system": system_prompt, "stream": False } headers = {"Content-Type": "application/json"} async with aiohttp.ClientSession() as session: async with session.post(f"{OLLAMA_URL}/api/generate", json=payload, headers=headers) as response: if response.status == 200: data = await response.json() return data.get("response", "No response.") else: return f"Error: {response.status}" # Load and index once at startup def load_miku_knowledge(): with open("miku_lore.txt", "r", encoding="utf-8") as f: text = f.read() from langchain.text_splitter import RecursiveCharacterTextSplitter text_splitter = RecursiveCharacterTextSplitter( chunk_size=520, chunk_overlap=50, separators=["\n\n", "\n", ".", "!", "?", ",", " ", ""] ) docs = [Document(page_content=chunk) for chunk in text_splitter.split_text(text)] vectorstore = FAISS.from_documents(docs, embeddings) return vectorstore def load_miku_lyrics(): with open("miku_lyrics.txt", "r", encoding="utf-8") as f: lyrics_text = f.read() text_splitter = CharacterTextSplitter(chunk_size=500, chunk_overlap=50) docs = [Document(page_content=chunk) for chunk in text_splitter.split_text(lyrics_text)] vectorstore = FAISS.from_documents(docs, embeddings) return vectorstore miku_vectorstore = load_miku_knowledge() miku_lyrics_vectorstore = load_miku_lyrics() async def query_ollama(user_prompt, user_id): relevant_docs_lore = miku_vectorstore.similarity_search(user_prompt, k=3) relevant_docs_lyrics = miku_lyrics_vectorstore.similarity_search(user_prompt, k=3) context_lore = "\n".join([doc.page_content for doc in relevant_docs_lore]) context_lyrics = "\n".join([doc.page_content for doc in relevant_docs_lyrics]) combined_docs = relevant_docs_lore + relevant_docs_lyrics context = "\n\n".join([doc.page_content for doc in combined_docs]) # Persona definition with open("miku_prompt.txt", "r", encoding="utf-8") as f: system_prompt = f.read() # Build conversation history history = conversation_history[user_id] history_text = "\n".join([f"User: {u}\nMiku: {m}" for u, m in history]) global CURRENT_MOOD # Combine prompt full_prompt = ( f"{context_lore}\n\n{context_lyrics}\n\n" f"{history_text}\nMiku is currently feeling: {CURRENT_MOOD}\nPlease respond in a way that reflects this emotional tone.\nUser: {user_prompt}\nMiku:" ) headers = {'Content-Type': 'application/json'} payload = { "model": OLLAMA_MODEL, "prompt": full_prompt, "system": system_prompt, "stream": False } async with aiohttp.ClientSession() as session: async with session.post(f"{OLLAMA_URL}/api/generate", json=payload, headers=headers) as response: if response.status == 200: data = await response.json() reply = data.get("response", "No response.") # Save to conversation history conversation_history[user_id].append((user_prompt, reply)) return reply else: return f"Error: {response.status}" async def send_monday_video(): await switch_model(OLLAMA_MODEL) # Generate a motivational message prompt = "It's Miku Monday! Give me an energetic and heartfelt Miku Monday morning message to inspire someone for the week ahead." response = await query_ollama(prompt, user_id="weekly-motivation") video_url = "http://zip.koko210cloud.xyz/u/zEgU7Z.mp4" target_channel_ids = [ 761014220707332107, 1140377617237807266 ] for channel_id in target_channel_ids: channel = client.get_channel(channel_id) if channel is None: print(f"❌ Could not find channel with ID {channel_id}. Make sure the bot is in the server.") return try: await channel.send(content=response) # Send video link await channel.send(f"[Happy Miku Monday!]({video_url})") print(f"✅ Sent Monday video to channel ID {channel_id}") except Exception as e: print(f"⚠️ Failed to send video to channel ID {channel_id}: {e}") async def send_bedtime_reminder(): await switch_model(OLLAMA_MODEL) for channel_id in BEDTIME_CHANNEL_IDS: channel = client.get_channel(channel_id) if not channel: print(f"⚠️ Channel ID {channel_id} not found.") continue guild = channel.guild # Filter online members (excluding bots) online_members = [ member for member in guild.members if member.status in {Status.online, Status.idle, Status.dnd} and not member.bot ] specific_user_id = 214857593045254151 # target user ID specific_user = guild.get_member(specific_user_id) if specific_user and specific_user not in online_members: online_members.append(specific_user) if not online_members: print(f"😴 No online members to ping in {guild.name}") continue chosen_one = random.choice(online_members) # Generate bedtime message prompt = ( f"Write a sweet, funny, or encouraging bedtime message to remind someone it's getting late and they should sleep. " f"Make it short and wholesome, as if Miku is genuinely worried about their well-being. Imply that it's not good staying up so late." f"Miku is currently feeling: {CURRENT_MOOD}\nPlease word in a way that reflects this emotional tone." ) bedtime_message = await query_ollama(prompt, user_id="bedtime-miku") try: await channel.send(f"{chosen_one.mention}, {bedtime_message}") print(f"🌙 Sent bedtime reminder to {chosen_one.display_name} in {guild.name}") except Exception as e: print(f"⚠️ Failed to send bedtime reminder in {guild.name}: {e}") def schedule_random_bedtime(): now = datetime.now() target_time = now.replace(hour=20, minute=30, second=0, microsecond=0) # If it's already past 23:30 today, schedule for tomorrow if now > target_time: target_time += timedelta(days=1) # Add random offset (0–29 mins) offset_minutes = random.randint(0, 29) run_time = target_time + timedelta(minutes=offset_minutes) scheduler.add_job(send_bedtime_reminder, trigger=DateTrigger(run_date=run_time)) print(f"⏰ Bedtime reminder scheduled for {run_time.strftime('%Y-%m-%d %H:%M:%S')}") async def overlay_username_with_ffmpeg(base_video_path, output_path, username): font_path = "/usr/share/fonts/truetype/dejavu/DejaVuSans-Bold.ttf" text = f"@{username}" # Define your six positions (x, y) positions = { 1: ("250", "370"), 2: ("330", "130"), 3: ("300", "90"), 4: ("380", "180"), 5: ("365", "215"), 6: ("55", "365"), 7: ("290", "130"), 8: ("320", "210"), 9: ("310", "240"), 10: ("400", "240") } # Each entry: (start_time, end_time, position_index) text_entries = [ (4.767, 5.367, 1, "username"), (5.4, 5.967, 2, "username"), (6.233, 6.833, 3, "username"), (6.967, 7.6, 4, "username"), (7.733, 8.367, 5, "username"), (8.667, 9.133, 6, "username"), (9.733, 10.667, 7, "username"), (11.6, 12.033, 8, "@everyone"), (12.067, 13.0, 9, "@everyone"), (13.033, 14.135, 10, "@everyone"), ] # Build drawtext filters drawtext_filters = [] for start, end, pos_id, text_type in text_entries: x_coord, y_coord = positions[pos_id] # Determine actual text content text_content = f"@{username}" if text_type == "username" else text_type x = f"{x_coord} - text_w/2" y = f"{y_coord} - text_h/2" filter_str = ( f"drawtext=text='{text_content}':" f"fontfile='{font_path}':" f"fontcolor=black:fontsize=30:x={x}:y={y}:" f"enable='between(t,{start},{end})'" ) drawtext_filters.append(filter_str) vf_string = ",".join(drawtext_filters) ffmpeg_command = [ "ffmpeg", "-i", base_video_path, "-vf", vf_string, "-codec:a", "copy", output_path ] try: subprocess.run(ffmpeg_command, check=True) print("✅ Video processed successfully with username overlays.") except subprocess.CalledProcessError as e: print(f"⚠️ FFmpeg error: {e}") async def detect_and_react_to_kindness(message, after_reply=False): if message.id in kindness_reacted_messages: return # Already reacted — skip content = message.content.lower() emoji = random.choice(HEART_REACTIONS) # 1. Keyword-based detection if any(keyword in content for keyword in KINDNESS_KEYWORDS): try: await message.add_reaction(emoji) kindness_reacted_messages.add(message.id) message.kindness_reacted = True # Mark as done print("✅ Kindness detected via keywords. Reacted immediately.") except Exception as e: print(f"⚠️ Error adding reaction: {e}") return # 2. If not after_reply, defer model-based check if not after_reply: print("🗝️ No kindness via keywords. Deferring...") return # 3. Model-based detection try: prompt = ( "The following message was sent to Miku the bot. " "Does it sound like the user is being kind or affectionate toward Miku? " "Answer with 'yes' or 'no' only.\n\n" f"Message: \"{message.content}\"" ) result = await query_ollama(prompt, user_id="kindness-check") if result.strip().lower().startswith("yes"): await message.add_reaction(emoji) kindness_reacted_messages.add(message.id) print("✅ Kindness detected via model. Reacted.") else: print("🧊 No kindness detected.") except Exception as e: print(f"⚠️ Error during kindness analysis: {e}") @client.event async def on_ready(): print(f'🎤 MikuBot connected as {client.user}') # Change mood every 1 hour rotate_mood.start() # Schedule the weekly task (Monday 07:30) scheduler.add_job(send_monday_video, 'cron', day_of_week='mon', hour=7, minute=30) # Schedule first bedtime reminder schedule_random_bedtime() # Reschedule every midnight scheduler.add_job(schedule_random_bedtime, 'cron', hour=0, minute=0) #scheduler.add_job(send_bedtime_reminder, 'cron', hour=12, minute=22) scheduler.start() @client.event async def on_message(message): if message.author == client.user: return if message.content.strip().lower() == "miku, rape this nigga balls" and message.reference: async with message.channel.typing(): # Get replied-to user try: replied_msg = await message.channel.fetch_message(message.reference.message_id) target_username = replied_msg.author.display_name # Prepare video base_video = "MikuMikuBeam.mp4" output_video = f"/tmp/video_{''.join(random.choices(string.ascii_letters, k=5))}.mp4" await overlay_username_with_ffmpeg(base_video, output_video, target_username) caption = f"Here you go, @{target_username}! 🌟" #await message.channel.send(content=caption, file=discord.File(output_video)) await replied_msg.reply(file=discord.File(output_video)) except Exception as e: print(f"⚠️ Error processing video: {e}") await message.channel.send("Sorry, something went wrong while generating the video.") return text = message.content.strip() global CURRENT_MOOD if await is_miku_addressed(message): prompt = text # No cleanup — keep it raw # 1st kindness check with just keywords if CURRENT_MOOD not in ["angry", "irritated"]: await detect_and_react_to_kindness(message) async with message.channel.typing(): # If message has an image attachment if message.attachments: for attachment in message.attachments: if any(attachment.filename.lower().endswith(ext) for ext in [".jpg", ".jpeg", ".png", ".webp"]): base64_img = await download_and_encode_image(attachment.url) if not base64_img: await message.channel.send("I couldn't load the image, sorry!") return # Analyze image (objective description) qwen_description = await analyze_image_with_qwen(base64_img) miku_reply = await rephrase_as_miku(qwen_description, prompt) await message.channel.send(miku_reply) return # If message is just a prompt, no image response = await query_ollama(prompt, user_id=str(message.author.id)) await message.channel.send(response) # 2nd kindness check (only if no keywords detected) if CURRENT_MOOD not in ["angry", "irritated"]: await detect_and_react_to_kindness(message, after_reply=True) if message.content.lower().strip() == "!reset": conversation_history[str(message.author.id)].clear() await message.channel.send("Okay! Memory reset for you~ ✨") # Manual Monday test command if message.content.lower().strip() == "!monday": await send_monday_video() #await message.channel.send("✅ Monday message sent (or attempted). Check logs.") return if message.content.startswith("!miku mood "): new_mood = message.content.split("!miku mood ")[1].strip().lower() path = os.path.join("moods", f"{new_mood}.txt") if os.path.exists(path): CURRENT_MOOD = load_mood_description(new_mood) await message.channel.send(f"🌈 Miku's mood has been set to **{new_mood}**!") else: await message.channel.send("⚠️ I don't recognize that mood. Try again with a valid one.") return if message.content.strip().lower() == "!miku mood-reset": CURRENT_MOOD = load_mood_description("neutral") await message.channel.send("🔄 Miku’s mood has been reset to **neutral**.") return if message.content.strip().lower() == "!miku mood-check": await message.channel.send(f"☑️ Miku’s mood is currently {CURRENT_MOOD}.") if AUTO_MOOD and 'response' in locals(): detected = detect_mood_shift(response) if detected and detected != CURRENT_MOOD: CURRENT_MOOD = load_mood_description(detected) print(f"🔄 Auto-updated mood to: {detected}") client.run(DISCORD_BOT_TOKEN)