443 lines
15 KiB
Python
443 lines
15 KiB
Python
|
|
# utils/image_handling.py
|
||
|
|
|
||
|
|
import aiohttp
|
||
|
|
import base64
|
||
|
|
import io
|
||
|
|
import tempfile
|
||
|
|
import os
|
||
|
|
import subprocess
|
||
|
|
from PIL import Image
|
||
|
|
import re
|
||
|
|
|
||
|
|
import globals
|
||
|
|
# No need for switch_model anymore - llama-swap handles this automatically
|
||
|
|
|
||
|
|
|
||
|
|
async def download_and_encode_image(url):
|
||
|
|
"""Download and encode an image to base64."""
|
||
|
|
async with aiohttp.ClientSession() as session:
|
||
|
|
async with session.get(url) as resp:
|
||
|
|
if resp.status != 200:
|
||
|
|
return None
|
||
|
|
img_bytes = await resp.read()
|
||
|
|
return base64.b64encode(img_bytes).decode('utf-8')
|
||
|
|
|
||
|
|
|
||
|
|
async def download_and_encode_media(url):
|
||
|
|
"""Download and encode any media file (image, video, GIF) to base64."""
|
||
|
|
async with aiohttp.ClientSession() as session:
|
||
|
|
async with session.get(url) as resp:
|
||
|
|
if resp.status != 200:
|
||
|
|
return None
|
||
|
|
media_bytes = await resp.read()
|
||
|
|
return base64.b64encode(media_bytes).decode('utf-8')
|
||
|
|
|
||
|
|
|
||
|
|
async def extract_tenor_gif_url(tenor_url):
|
||
|
|
"""
|
||
|
|
Extract the actual GIF URL from a Tenor link.
|
||
|
|
Tenor URLs look like: https://tenor.com/view/...
|
||
|
|
We need to get the actual GIF file URL from the page or API.
|
||
|
|
"""
|
||
|
|
try:
|
||
|
|
# Try to extract GIF ID from URL
|
||
|
|
# Tenor URLs: https://tenor.com/view/name-name-12345678 or https://tenor.com/12345678.gif
|
||
|
|
match = re.search(r'tenor\.com/view/[^/]+-(\d+)', tenor_url)
|
||
|
|
if not match:
|
||
|
|
match = re.search(r'tenor\.com/(\d+)\.gif', tenor_url)
|
||
|
|
|
||
|
|
if not match:
|
||
|
|
print(f"⚠️ Could not extract Tenor GIF ID from: {tenor_url}")
|
||
|
|
return None
|
||
|
|
|
||
|
|
gif_id = match.group(1)
|
||
|
|
|
||
|
|
# Tenor's direct media URL format (this works without API key)
|
||
|
|
# Try the media CDN URL directly
|
||
|
|
media_url = f"https://media.tenor.com/images/{gif_id}/tenor.gif"
|
||
|
|
|
||
|
|
# Verify the URL works
|
||
|
|
async with aiohttp.ClientSession() as session:
|
||
|
|
async with session.head(media_url) as resp:
|
||
|
|
if resp.status == 200:
|
||
|
|
print(f"✅ Found Tenor GIF: {media_url}")
|
||
|
|
return media_url
|
||
|
|
|
||
|
|
# If that didn't work, try alternative formats
|
||
|
|
for fmt in ['tenor.gif', 'raw']:
|
||
|
|
alt_url = f"https://media.tenor.com/{gif_id}/{fmt}"
|
||
|
|
async with aiohttp.ClientSession() as session:
|
||
|
|
async with session.head(alt_url) as resp:
|
||
|
|
if resp.status == 200:
|
||
|
|
print(f"✅ Found Tenor GIF (alternative): {alt_url}")
|
||
|
|
return alt_url
|
||
|
|
|
||
|
|
print(f"⚠️ Could not find working Tenor media URL for ID: {gif_id}")
|
||
|
|
return None
|
||
|
|
|
||
|
|
except Exception as e:
|
||
|
|
print(f"⚠️ Error extracting Tenor GIF URL: {e}")
|
||
|
|
return None
|
||
|
|
|
||
|
|
|
||
|
|
async def convert_gif_to_mp4(gif_bytes):
|
||
|
|
"""
|
||
|
|
Convert a GIF to MP4 using ffmpeg for better compatibility with video processing.
|
||
|
|
Returns the MP4 bytes.
|
||
|
|
"""
|
||
|
|
try:
|
||
|
|
# Write GIF to temp file
|
||
|
|
with tempfile.NamedTemporaryFile(delete=False, suffix='.gif') as temp_gif:
|
||
|
|
temp_gif.write(gif_bytes)
|
||
|
|
temp_gif_path = temp_gif.name
|
||
|
|
|
||
|
|
# Output MP4 path
|
||
|
|
temp_mp4_path = temp_gif_path.replace('.gif', '.mp4')
|
||
|
|
|
||
|
|
try:
|
||
|
|
# Convert GIF to MP4 with ffmpeg
|
||
|
|
# -movflags faststart makes it streamable
|
||
|
|
# -pix_fmt yuv420p ensures compatibility
|
||
|
|
# -vf scale makes sure dimensions are even (required for yuv420p)
|
||
|
|
ffmpeg_cmd = [
|
||
|
|
'ffmpeg', '-i', temp_gif_path,
|
||
|
|
'-movflags', 'faststart',
|
||
|
|
'-pix_fmt', 'yuv420p',
|
||
|
|
'-vf', 'scale=trunc(iw/2)*2:trunc(ih/2)*2',
|
||
|
|
'-y',
|
||
|
|
temp_mp4_path
|
||
|
|
]
|
||
|
|
|
||
|
|
result = subprocess.run(ffmpeg_cmd, capture_output=True, check=True)
|
||
|
|
|
||
|
|
# Read the MP4 file
|
||
|
|
with open(temp_mp4_path, 'rb') as f:
|
||
|
|
mp4_bytes = f.read()
|
||
|
|
|
||
|
|
print(f"✅ Converted GIF to MP4 ({len(gif_bytes)} bytes → {len(mp4_bytes)} bytes)")
|
||
|
|
return mp4_bytes
|
||
|
|
|
||
|
|
finally:
|
||
|
|
# Clean up temp files
|
||
|
|
if os.path.exists(temp_gif_path):
|
||
|
|
os.remove(temp_gif_path)
|
||
|
|
if os.path.exists(temp_mp4_path):
|
||
|
|
os.remove(temp_mp4_path)
|
||
|
|
|
||
|
|
except subprocess.CalledProcessError as e:
|
||
|
|
print(f"⚠️ ffmpeg error converting GIF to MP4: {e.stderr.decode()}")
|
||
|
|
return None
|
||
|
|
except Exception as e:
|
||
|
|
print(f"⚠️ Error converting GIF to MP4: {e}")
|
||
|
|
import traceback
|
||
|
|
traceback.print_exc()
|
||
|
|
return None
|
||
|
|
|
||
|
|
|
||
|
|
async def extract_video_frames(video_bytes, num_frames=4):
|
||
|
|
"""
|
||
|
|
Extract frames from a video or GIF for analysis.
|
||
|
|
Returns a list of base64-encoded frames.
|
||
|
|
"""
|
||
|
|
try:
|
||
|
|
# Try GIF first with PIL
|
||
|
|
try:
|
||
|
|
gif = Image.open(io.BytesIO(video_bytes))
|
||
|
|
if hasattr(gif, 'n_frames'):
|
||
|
|
frames = []
|
||
|
|
|
||
|
|
# Calculate step to get evenly distributed frames
|
||
|
|
total_frames = gif.n_frames
|
||
|
|
step = max(1, total_frames // num_frames)
|
||
|
|
|
||
|
|
for i in range(0, total_frames, step):
|
||
|
|
if len(frames) >= num_frames:
|
||
|
|
break
|
||
|
|
gif.seek(i)
|
||
|
|
frame = gif.convert('RGB')
|
||
|
|
|
||
|
|
# Convert to base64
|
||
|
|
buffer = io.BytesIO()
|
||
|
|
frame.save(buffer, format='JPEG')
|
||
|
|
frame_b64 = base64.b64encode(buffer.getvalue()).decode('utf-8')
|
||
|
|
frames.append(frame_b64)
|
||
|
|
|
||
|
|
if frames:
|
||
|
|
return frames
|
||
|
|
except Exception as e:
|
||
|
|
print(f"Not a GIF, trying video extraction: {e}")
|
||
|
|
|
||
|
|
# For video files (MP4, WebM, etc.), use ffmpeg
|
||
|
|
import subprocess
|
||
|
|
import asyncio
|
||
|
|
|
||
|
|
# Write video bytes to temp file
|
||
|
|
with tempfile.NamedTemporaryFile(delete=False, suffix='.mp4') as temp_video:
|
||
|
|
temp_video.write(video_bytes)
|
||
|
|
temp_video_path = temp_video.name
|
||
|
|
|
||
|
|
try:
|
||
|
|
# Get video duration first
|
||
|
|
probe_cmd = [
|
||
|
|
'ffprobe', '-v', 'error',
|
||
|
|
'-show_entries', 'format=duration',
|
||
|
|
'-of', 'default=noprint_wrappers=1:nokey=1',
|
||
|
|
temp_video_path
|
||
|
|
]
|
||
|
|
|
||
|
|
result = subprocess.run(probe_cmd, capture_output=True, text=True)
|
||
|
|
duration = float(result.stdout.strip())
|
||
|
|
|
||
|
|
# Calculate timestamps for evenly distributed frames
|
||
|
|
timestamps = [duration * i / num_frames for i in range(num_frames)]
|
||
|
|
|
||
|
|
frames = []
|
||
|
|
for i, timestamp in enumerate(timestamps):
|
||
|
|
# Extract frame at timestamp
|
||
|
|
output_path = f"/tmp/frame_{i}.jpg"
|
||
|
|
ffmpeg_cmd = [
|
||
|
|
'ffmpeg', '-ss', str(timestamp),
|
||
|
|
'-i', temp_video_path,
|
||
|
|
'-vframes', '1',
|
||
|
|
'-q:v', '2',
|
||
|
|
'-y',
|
||
|
|
output_path
|
||
|
|
]
|
||
|
|
|
||
|
|
subprocess.run(ffmpeg_cmd, capture_output=True, check=True)
|
||
|
|
|
||
|
|
# Read and encode the frame
|
||
|
|
with open(output_path, 'rb') as f:
|
||
|
|
frame_bytes = f.read()
|
||
|
|
frame_b64 = base64.b64encode(frame_bytes).decode('utf-8')
|
||
|
|
frames.append(frame_b64)
|
||
|
|
|
||
|
|
# Clean up frame file
|
||
|
|
os.remove(output_path)
|
||
|
|
|
||
|
|
return frames
|
||
|
|
|
||
|
|
finally:
|
||
|
|
# Clean up temp video file
|
||
|
|
os.remove(temp_video_path)
|
||
|
|
|
||
|
|
except Exception as e:
|
||
|
|
print(f"⚠️ Error extracting frames: {e}")
|
||
|
|
import traceback
|
||
|
|
traceback.print_exc()
|
||
|
|
|
||
|
|
return None
|
||
|
|
|
||
|
|
|
||
|
|
async def analyze_image_with_vision(base64_img):
|
||
|
|
"""
|
||
|
|
Analyze an image using llama.cpp multimodal capabilities.
|
||
|
|
Uses OpenAI-compatible chat completions API with image_url.
|
||
|
|
"""
|
||
|
|
|
||
|
|
payload = {
|
||
|
|
"model": globals.VISION_MODEL,
|
||
|
|
"messages": [
|
||
|
|
{
|
||
|
|
"role": "user",
|
||
|
|
"content": [
|
||
|
|
{
|
||
|
|
"type": "text",
|
||
|
|
"text": "Describe this image in detail."
|
||
|
|
},
|
||
|
|
{
|
||
|
|
"type": "image_url",
|
||
|
|
"image_url": {
|
||
|
|
"url": f"data:image/jpeg;base64,{base64_img}"
|
||
|
|
}
|
||
|
|
}
|
||
|
|
]
|
||
|
|
}
|
||
|
|
],
|
||
|
|
"stream": False,
|
||
|
|
"max_tokens": 300
|
||
|
|
}
|
||
|
|
|
||
|
|
headers = {"Content-Type": "application/json"}
|
||
|
|
|
||
|
|
async with aiohttp.ClientSession() as session:
|
||
|
|
try:
|
||
|
|
async with session.post(f"{globals.LLAMA_URL}/v1/chat/completions", json=payload, headers=headers) as response:
|
||
|
|
if response.status == 200:
|
||
|
|
data = await response.json()
|
||
|
|
return data.get("choices", [{}])[0].get("message", {}).get("content", "No description.")
|
||
|
|
else:
|
||
|
|
error_text = await response.text()
|
||
|
|
print(f"❌ Vision API error: {response.status} - {error_text}")
|
||
|
|
return f"Error analyzing image: {response.status}"
|
||
|
|
except Exception as e:
|
||
|
|
print(f"⚠️ Error in analyze_image_with_vision: {e}")
|
||
|
|
return f"Error analyzing image: {str(e)}"
|
||
|
|
|
||
|
|
|
||
|
|
async def analyze_video_with_vision(video_frames, media_type="video"):
|
||
|
|
"""
|
||
|
|
Analyze a video or GIF by analyzing multiple frames.
|
||
|
|
video_frames: list of base64-encoded frames
|
||
|
|
media_type: "video", "gif", or "tenor_gif" to customize the analysis prompt
|
||
|
|
"""
|
||
|
|
|
||
|
|
# Customize prompt based on media type
|
||
|
|
if media_type == "gif":
|
||
|
|
prompt_text = "Describe what's happening in this GIF animation. Analyze the sequence of frames and describe the action, motion, and any repeating patterns."
|
||
|
|
elif media_type == "tenor_gif":
|
||
|
|
prompt_text = "Describe what's happening in this animated GIF. Analyze the sequence of frames and describe the action, emotion, or reaction being shown."
|
||
|
|
else: # video
|
||
|
|
prompt_text = "Describe what's happening in this video. Analyze the sequence of frames and describe the action or motion."
|
||
|
|
|
||
|
|
# Build content with multiple images
|
||
|
|
content = [
|
||
|
|
{
|
||
|
|
"type": "text",
|
||
|
|
"text": prompt_text
|
||
|
|
}
|
||
|
|
]
|
||
|
|
|
||
|
|
# Add each frame as an image
|
||
|
|
for frame in video_frames:
|
||
|
|
content.append({
|
||
|
|
"type": "image_url",
|
||
|
|
"image_url": {
|
||
|
|
"url": f"data:image/jpeg;base64,{frame}"
|
||
|
|
}
|
||
|
|
})
|
||
|
|
|
||
|
|
payload = {
|
||
|
|
"model": globals.VISION_MODEL,
|
||
|
|
"messages": [
|
||
|
|
{
|
||
|
|
"role": "user",
|
||
|
|
"content": content
|
||
|
|
}
|
||
|
|
],
|
||
|
|
"stream": False,
|
||
|
|
"max_tokens": 400
|
||
|
|
}
|
||
|
|
|
||
|
|
headers = {"Content-Type": "application/json"}
|
||
|
|
|
||
|
|
async with aiohttp.ClientSession() as session:
|
||
|
|
try:
|
||
|
|
async with session.post(f"{globals.LLAMA_URL}/v1/chat/completions", json=payload, headers=headers) as response:
|
||
|
|
if response.status == 200:
|
||
|
|
data = await response.json()
|
||
|
|
return data.get("choices", [{}])[0].get("message", {}).get("content", "No description.")
|
||
|
|
else:
|
||
|
|
error_text = await response.text()
|
||
|
|
print(f"❌ Vision API error: {response.status} - {error_text}")
|
||
|
|
return f"Error analyzing video: {response.status}"
|
||
|
|
except Exception as e:
|
||
|
|
print(f"⚠️ Error in analyze_video_with_vision: {e}")
|
||
|
|
return f"Error analyzing video: {str(e)}"
|
||
|
|
|
||
|
|
|
||
|
|
async def rephrase_as_miku(vision_output, user_prompt, guild_id=None, user_id=None, author_name=None, media_type="image"):
|
||
|
|
"""
|
||
|
|
Rephrase vision model's image analysis as Miku would respond to it.
|
||
|
|
|
||
|
|
Args:
|
||
|
|
vision_output: Description from vision model
|
||
|
|
user_prompt: User's original message
|
||
|
|
guild_id: Guild ID for server context (None for DMs)
|
||
|
|
user_id: User ID for conversation history
|
||
|
|
author_name: Display name of the user
|
||
|
|
media_type: Type of media ("image", "video", "gif", or "tenor_gif")
|
||
|
|
"""
|
||
|
|
from utils.llm import query_llama
|
||
|
|
|
||
|
|
# Format the user's message to include vision context with media type
|
||
|
|
# This will be saved to history automatically by query_llama
|
||
|
|
if media_type == "gif":
|
||
|
|
media_prefix = "Looking at a GIF"
|
||
|
|
elif media_type == "tenor_gif":
|
||
|
|
media_prefix = "Looking at a Tenor GIF"
|
||
|
|
elif media_type == "video":
|
||
|
|
media_prefix = "Looking at a video"
|
||
|
|
else: # image
|
||
|
|
media_prefix = "Looking at an image"
|
||
|
|
|
||
|
|
if user_prompt:
|
||
|
|
# Include media type, vision description, and user's text
|
||
|
|
formatted_prompt = f"[{media_prefix}: {vision_output}] {user_prompt}"
|
||
|
|
else:
|
||
|
|
# If no text, just the vision description with media type
|
||
|
|
formatted_prompt = f"[{media_prefix}: {vision_output}]"
|
||
|
|
|
||
|
|
# Use the standard LLM query with appropriate response type
|
||
|
|
response_type = "dm_response" if guild_id is None else "server_response"
|
||
|
|
|
||
|
|
# Use the actual user_id for history tracking, fall back to "image_analysis" for backward compatibility
|
||
|
|
history_user_id = user_id if user_id else "image_analysis"
|
||
|
|
|
||
|
|
return await query_llama(
|
||
|
|
formatted_prompt,
|
||
|
|
user_id=history_user_id,
|
||
|
|
guild_id=guild_id,
|
||
|
|
response_type=response_type,
|
||
|
|
author_name=author_name,
|
||
|
|
media_type=media_type # Pass media type to Miku's LLM
|
||
|
|
)
|
||
|
|
|
||
|
|
# Backward compatibility aliases
|
||
|
|
analyze_image_with_qwen = analyze_image_with_vision
|
||
|
|
|
||
|
|
|
||
|
|
async def extract_embed_content(embed):
|
||
|
|
"""
|
||
|
|
Extract text and media content from a Discord embed.
|
||
|
|
Returns a dictionary with:
|
||
|
|
- 'text': combined text from title, description, fields
|
||
|
|
- 'images': list of image URLs
|
||
|
|
- 'videos': list of video URLs
|
||
|
|
- 'has_content': boolean indicating if there's any content
|
||
|
|
"""
|
||
|
|
content = {
|
||
|
|
'text': '',
|
||
|
|
'images': [],
|
||
|
|
'videos': [],
|
||
|
|
'has_content': False
|
||
|
|
}
|
||
|
|
|
||
|
|
text_parts = []
|
||
|
|
|
||
|
|
# Extract text content
|
||
|
|
if embed.title:
|
||
|
|
text_parts.append(f"**{embed.title}**")
|
||
|
|
|
||
|
|
if embed.description:
|
||
|
|
text_parts.append(embed.description)
|
||
|
|
|
||
|
|
if embed.author and embed.author.name:
|
||
|
|
text_parts.append(f"Author: {embed.author.name}")
|
||
|
|
|
||
|
|
if embed.fields:
|
||
|
|
for field in embed.fields:
|
||
|
|
text_parts.append(f"**{field.name}**: {field.value}")
|
||
|
|
|
||
|
|
if embed.footer and embed.footer.text:
|
||
|
|
text_parts.append(f"_{embed.footer.text}_")
|
||
|
|
|
||
|
|
# Combine text
|
||
|
|
content['text'] = '\n\n'.join(text_parts)
|
||
|
|
|
||
|
|
# Extract image URLs
|
||
|
|
if embed.image and embed.image.url:
|
||
|
|
content['images'].append(embed.image.url)
|
||
|
|
|
||
|
|
if embed.thumbnail and embed.thumbnail.url:
|
||
|
|
content['images'].append(embed.thumbnail.url)
|
||
|
|
|
||
|
|
# Extract video URLs
|
||
|
|
if embed.video and embed.video.url:
|
||
|
|
content['videos'].append(embed.video.url)
|
||
|
|
|
||
|
|
# Check if we have any content
|
||
|
|
content['has_content'] = bool(content['text'] or content['images'] or content['videos'])
|
||
|
|
|
||
|
|
return content
|