Files
miku-discord/bot/utils/core.py

167 lines
6.6 KiB
Python
Raw Normal View History

2025-12-07 17:15:09 +02:00
# utils/core.py
import asyncio
import aiohttp
import re
import globals
from langchain_community.vectorstores import FAISS
from langchain_text_splitters import CharacterTextSplitter, RecursiveCharacterTextSplitter
from langchain_core.documents import Document
from utils.logger import get_logger
logger = get_logger('core')
2025-12-07 17:15:09 +02:00
# switch_model() removed - llama-swap handles model switching automatically
async def is_miku_addressed(message) -> bool:
# Check if this is a DM (no guild)
if message.guild is None:
# In DMs, always respond to every message
return True
# Safety check: ensure guild and guild.me exist
if not message.guild or not message.guild.me:
logger.warning(f"Invalid guild or guild.me in message from {message.author}")
2025-12-07 17:15:09 +02:00
return False
# If message contains a ping for Miku, return true
if message.guild.me in message.mentions:
return True
# If message is a reply, check the referenced message author
if message.reference:
try:
referenced_msg = await message.channel.fetch_message(message.reference.message_id)
if referenced_msg.author == message.guild.me:
return True
except Exception as e:
logger.warning(f"Could not fetch referenced message: {e}")
2025-12-07 17:15:09 +02:00
cleaned = message.content.strip()
cleaned_lower = cleaned.lower()
# Base names for Miku in different scripts
base_names = [
'miku', 'мику', 'みく', 'ミク', '未来'
]
# Japanese honorifics - all scripts combined
honorifics = [
# Latin
'chan', 'san', 'kun', 'nyan', 'hime', 'tan', 'chin', 'heika',
'denka', 'kakka', 'shi', 'chama', 'kyun', 'dono', 'sensei', 'senpai', 'jou',
# Hiragana
'ちゃん', 'さん', 'くん', 'にゃん', 'ひめ', 'たん', 'ちん', 'へいか',
'でんか', 'かっか', '', 'ちゃま', 'きゅん', 'どの', 'せんせい', 'せんぱい', 'じょう',
# Katakana
'チャン', 'サン', 'クン', 'ニャン', 'ヒメ', 'タン', 'チン', 'ヘイカ',
'デンカ', 'カッカ', '', 'チャマ', 'キュン', 'ドノ', 'センセイ', 'センパイ', 'ジョウ',
# Cyrillic
'чан', 'сан', 'кун', 'нян', 'химе', 'тан', 'чин', 'хейка', 'хеика',
'денка', 'какка', 'си', 'чама', 'кюн', 'доно', 'сенсэй', 'сенсеи', 'сенпай', 'сенпаи', 'джо'
]
# o- prefix variants
o_prefixes = ['o-', 'о-', '', '']
# Build all possible name variations to check
name_patterns = []
for base in base_names:
base_lower = base.lower()
base_escaped = re.escape(base_lower)
# Base name alone
name_patterns.append(base_escaped)
# With honorifics (allows optional dash/space between)
for honorific in honorifics:
honorific_lower = honorific.lower()
honorific_escaped = re.escape(honorific_lower)
# Build pattern: base + optional [dash or space] + honorific
name_patterns.append(base_escaped + r'[\-\s]*' + honorific_escaped)
# With o- prefix
for prefix in o_prefixes:
prefix_lower = prefix.lower()
prefix_escaped = re.escape(prefix_lower)
# o-prefix + optional space + base
name_patterns.append(prefix_escaped + r'\s*' + base_escaped)
# With o- prefix + honorific
for honorific in honorifics:
honorific_lower = honorific.lower()
honorific_escaped = re.escape(honorific_lower)
# o-prefix + space + base + dash/space + honorific
name_patterns.append(prefix_escaped + r'\s*' + base_escaped + r'[\-\s]*' + honorific_escaped)
# Check all patterns - she must be "addressed" not just mentioned
for pattern in name_patterns:
try:
# Pattern 1: Start of message + punctuation/end
# "Miku, ..." or "みく!" or "ミクちゃん、..."
start_p = r'^' + pattern + r'(?:[,,、!?.。\s]+|$)'
if re.search(start_p, cleaned_lower, re.IGNORECASE):
return True
# Pattern 2: End of message (optionally preceded by punctuation)
# "..., Miku" or "...みく" or "...ミクちゃん!"
end_p = r'(?:[,,、!?.。\s]+|^)' + pattern + r'[!?.。\s]*$'
if re.search(end_p, cleaned_lower, re.IGNORECASE):
return True
# Pattern 3: Middle (surrounded by punctuation)
# "..., Miku, ..." or "...、ミク、..."
middle_p = r'[,,、!?.。\s]+' + pattern + r'[,,、!?.。\s]+'
if re.search(middle_p, cleaned_lower, re.IGNORECASE):
return True
# Pattern 4: Just the name alone
# "Miku" or "みく!" or "ミクちゃん"
alone_p = r'^\s*' + pattern + r'[!?.。]*\s*$'
if re.search(alone_p, cleaned_lower, re.IGNORECASE):
return True
except re.error as e:
# Log the problematic pattern and skip it
logger.error(f"REGEX ERROR - Pattern: '{pattern}' | Start regex: '{start_p}' | Error: {e}")
continue
return False
2025-12-07 17:15:09 +02:00
# Vectorstore functionality disabled - not needed with current structured context approach
# If you need embeddings in the future, you can use a different embedding provider
# For now, the bot uses structured prompts from context_manager.py
# def load_miku_knowledge():
# with open("miku_lore.txt", "r", encoding="utf-8") as f:
# text = f.read()
#
# from langchain_text_splitters import RecursiveCharacterTextSplitter
#
# text_splitter = RecursiveCharacterTextSplitter(
# chunk_size=520,
# chunk_overlap=50,
# separators=["\n\n", "\n", ".", "!", "?", ",", " ", ""]
# )
#
# docs = [Document(page_content=chunk) for chunk in text_splitter.split_text(text)]
#
# vectorstore = FAISS.from_documents(docs, embeddings)
# return vectorstore
#
# def load_miku_lyrics():
# with open("miku_lyrics.txt", "r", encoding="utf-8") as f:
# lyrics_text = f.read()
#
# text_splitter = CharacterTextSplitter(chunk_size=520, chunk_overlap=50)
# docs = [Document(page_content=chunk) for chunk in text_splitter.split_text(lyrics_text)]
#
# vectorstore = FAISS.from_documents(docs, embeddings)
# return vectorstore
#
# miku_vectorstore = load_miku_knowledge()
# miku_lyrics_vectorstore = load_miku_lyrics()